Linear and Quadratic Chabauty for Affine Hyperbolic Curves

Marius Leonhardt, Martin Lüdtke*, Steffen Müller

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

33 Downloads (Pure)


We give sufficient conditions for finiteness of linear and quadratic refined Chabauty-Kim loci of affine hyperbolic curves. We achieve this by constructing depth ≤2 quotients of the fundamental group, following a construction of Balakrishnan-Dogra in the projective case. We also apply Betts' machinery of weight filtrations to give unconditional explicit upper bounds on the number of S-integral points when our conditions are satisfied.
Originele taal-2English
Pagina's (van-tot)18752–18780
Aantal pagina's29
TijdschriftInternational Mathematics Research Notices
Nummer van het tijdschrift21
Vroegere onlinedatum15-aug.-2023
StatusPublished - nov.-2023

Citeer dit