Linear Fractional Transformations of Nevanlinna Functions Associated with a Nonnegative Operator

Jussi Behrndt, Seppo Hassi, Henk de Snoo*, Rudi Wietsma, Henrik Winkler

*Corresponding author voor dit werk

    Onderzoeksoutput: ArticleAcademicpeer review

    3 Citaten (Scopus)
    256 Downloads (Pure)

    Samenvatting

    In the present paper a subclass of scalar Nevanlinna functions is studied, which coincides with the class of Weyl functions associated to a nonnegative symmetric operator of defect one in a Hilbert space. This class consists of all Nevanlinna functions that are holomorphic on (-a, 0) and all those Nevanlinna functions that have one negative pole a and are injective on . These functions are characterized via integral representations and special attention is paid to linear fractional transformations which arise in extension and spectral problems of symmetric and selfadjoint operators.

    Originele taal-2English
    Pagina's (van-tot)331-362
    Aantal pagina's32
    TijdschriftComplex analysis and operator theory
    Volume7
    Nummer van het tijdschrift2
    DOI's
    StatusPublished - apr.-2013

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Linear Fractional Transformations of Nevanlinna Functions Associated with a Nonnegative Operator'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit