LOW-DEGREE POLYNOMIAL PHASE-FUNCTIONS WITH HIGH G-VALUE

K RINZEMA*, BJ HOENDERS, HA FERWERDA, JJ TENBOSCH

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
270 Downloads (Pure)

Samenvatting

In an attempt to construct an analytic theory of anisotropic random flight, the need has arisen to construct phase-functions for which the expansion in spherical harmonics has only a limited number of terms, but which have a high value for the asymmetry parameter g. We describe the procedure to find the phase-function which has a maximum value of g for given N, where N is the number of spherical components of the phase-function. It appears that in order to attain g = 0.9, one needs a phase-function composed of at least nine spherical components, or equivalently a polynomial of degree nine.

Originele taal-2English
Pagina's (van-tot)1343-1350
Aantal pagina's8
TijdschriftPhysics in Medicine and Biology
Volume38
Nummer van het tijdschrift9
DOI's
StatusPublished - sep.-1993

Vingerafdruk

Duik in de onderzoeksthema's van 'LOW-DEGREE POLYNOMIAL PHASE-FUNCTIONS WITH HIGH G-VALUE'. Samen vormen ze een unieke vingerafdruk.

Citeer dit