Low-Resource Text Style Transfer for Bangla: Data & Models

Sourabrata Mukherjee, Akanksha Bansal, Pritha Majumdar, Atul Kr Ojha, Ondřej Dušek

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)

Samenvatting

Text style transfer (TST) involves modifying the linguistic style of a given text while retaining its core content. This paper addresses the challenging task of text style transfer in the Bangla language, which is low-resourced in this area. We present a novel Bangla dataset that facilitates text sentiment transfer, a subtask of TST, enabling the transformation of positive sentiment sentences to negative and vice versa. To establish a high-quality base for further research, we refined and corrected an existing English dataset of 1,000 sentences for sentiment transfer based on Yelp reviews, and we introduce a new human-translated Bangla dataset that parallels its English counterpart. Furthermore, we offer multiple benchmark models that serve as a validation of the dataset and baseline for further research.

Originele taal-2English
TitelProceedings of the First Workshop on Bangla Language Processing (BLP-2023)
RedacteurenFarig Sadeque, Ruhul Amin, Sudipta Kar, Shammur Absar Chowdhury, Firoj Alam
UitgeverijAssociation for Computational Linguistics, ACL Anthology
Pagina's117-123
Aantal pagina's7
ISBN van elektronische versie9798891760585
DOI's
StatusPublished - 2023
Extern gepubliceerdJa
Evenement1st Workshop on Bangla Language Processing, BLP 2023 - Singapore, Singapore
Duur: 7-dec.-20237-dec.-2023

Conference

Conference1st Workshop on Bangla Language Processing, BLP 2023
Land/RegioSingapore
StadSingapore
Periode07/12/202307/12/2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Low-Resource Text Style Transfer for Bangla: Data & Models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit