Machine learning in practice-Evaluation of clinical value, guidelines

Luis Eduardo Juarez-Orozco, Bram Ruijsink, Ming Wai Yeung, Jan Walter Benjamins, Pim van der Harst*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

50 Downloads (Pure)

Samenvatting

Machine learning research in health care literature has grown at an unprecedented pace. This development has generated a clear disparity between the number of first publications involving machine learning implementations and that of orienting guidelines and recommendation statements to promote quality and report standardization. In turn, this hinders the much-needed evaluation of the clinical value of machine learning studies and applications. This appraisal should constitute a continuous process that allows performance evaluation, facilitates repeatability, leads optimization and boost clinical value while minimizing research waste. The present chapter outlines the need for machine learning frameworks in healthcare research to guide efforts in reporting and evaluating clinical value these novel implementations, and it discusses the emerging recommendations and guidelines in the area.

Originele taal-2English
TitelClinical Applications of Artificial Intelligence in Real-World Data
RedacteurenFolkert W. Asselbergs, Spiros Denaxas, Daniel L. Oberski, Jason H. Moore
UitgeverijSpringer International Publishing AG
Pagina's247-261
Aantal pagina's15
ISBN van elektronische versie9783031366789
ISBN van geprinte versie9783031366772
DOI's
StatusPublished - 4-nov.-2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Machine learning in practice-Evaluation of clinical value, guidelines'. Samen vormen ze een unieke vingerafdruk.

Citeer dit