Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation

Julian Koellermeier*, Philipp Krah, Jonas Kusch

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

14 Downloads (Pure)

Samenvatting

Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaranteeing physical properties like mass conservation. In this paper, we develop the first model reduction for the hyperbolic shallow water moment equations and achieve mass conservation. This is accomplished using a macro-micro decomposition of the model into a macroscopic (conservative) part and a microscopic (non-conservative) part with subsequent model reduction using either POD-Galerkin or dynamical low-rank approximation only on the microscopic (non-conservative) part. Numerical experiments showcase the performance of the new model reduction methods including high accuracy and fast computation times together with guaranteed conservation and consistency properties.
Originele taal-2English
Artikelnummer76
Aantal pagina's41
TijdschriftAdvances in Computational Mathematics
Volume50
Nummer van het tijdschrift4
DOI's
StatusPublished - aug.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit