TY - JOUR
T1 - Measurement report
T2 - Dual-carbon isotopic characterization of carbonaceous aerosol reveals different primary and secondary sources in Beijing and Xi'an during severe haze events
AU - Ni, Haiyan
AU - Huang, Ru Jin
AU - Cosijn, Max M.
AU - Yang, Lu
AU - Guo, Jie
AU - Cao, Junji
AU - Dusek, Ulrike
N1 - Funding Information:
Financial support. This research has been supported by the Na-
Funding Information:
This research has been supported by the National Key Research and Development Program of China (grant no. 2017YFC0212701), the National Natural Science Foundation of China (grant nos. 41925015, 91644219, and 41877408), the KNAW (grant no. 530-5CDP30), the Chinese Academy of Sciences (grant no. ZDBS-LY-DQC001), and the Cross Innovative Team fund from the State Key Laboratory of Loess and Quaternary Geology (grant no. SKLLQGTD1801).
Funding Information:
Acknowledgements. We acknowledge the financial support from the Gratama Foundation. We thank Marc Bleeker and Henk Been for their help with the 14C measurements. Special thanks are also given to Anita Aerts-Bijma and Dicky van Zonneveld for their assistance in 14C data correction at CIO.
Publisher Copyright:
© Author(s) 2020.
PY - 2020/12/22
Y1 - 2020/12/22
N2 - To mitigate haze pollution in China, a better understanding of the sources of carbonaceous aerosols is required due to the complexity in multiple emissions and atmospheric processes. Here we combined the analysis of radiocarbon and the stable isotope 13C to investigate the sources and formation of carbonaceous aerosols collected in two Chinese megacities (Beijing and Xi'an) during severe haze events of a "red alarm"level from December 2016 to January 2017. The haze periods with daily PM2:5 concentrations as high as ∼400 μgm-3 were compared to subsequent clean periods (i.e., PM2:5 less than median concentrations during the winter 2016/2017) with PM2:5 concentrations below 100 μgm-3 in Xi'an and below 20 μgm-3 in Beijing. In Xi'an, liquid fossil fuel combustion was the dominant source of elemental carbon (EC; 44 %-57 %), followed by biomass burning (25 %-29 %) and coal combustion (17 %-29 %). In Beijing, coal combustion contributed 45 %-61% of EC, and biomass burning (17 %-24 %) and liquid fossil fuel combustion (22 %-33 %) contributed less. Non-fossil sources contributed 51 %-56% of organic carbon (OC) in Xi'an, and fossil sources contributed 63 %-69% of OC in Beijing. Secondary OC (SOC) was largely contributed by non-fossil sources in Xi'an (56∼6 %) and by fossil sources in Beijing (75∼10 %), especially during haze periods. The fossil vs. non-fossil contributions to OC and EC did not change drastically during haze events in both Xi'an and Beijing. However, compared to clean periods, the contribution of coal combustion to EC during haze periods increased in Xi'an and decreased in Beijing. During clean periods, primary OC from biomass burning and fossil sources constituted ∼70% of OC in Xi'an and ∼53% of OC in Beijing. From clean to haze periods, the contribution of SOC to total OC increased in Xi'an but decreased in Beijing, suggesting that the contribution of secondary organic aerosol formation to increased OC during haze periods was more efficient in Xi'an than in Beijing. In Beijing, the high SOC fraction in total OC during clean periods was mainly due to an elevated contribution from non-fossil SOC. In Xi'an, a slight day-night difference was observed during the clean period with enhanced fossil contributions to OC and EC during the day. This day-night difference was negligible during severe haze periods, likely due to the enhanced accumulation of pollutants under stagnant weather conditions.
AB - To mitigate haze pollution in China, a better understanding of the sources of carbonaceous aerosols is required due to the complexity in multiple emissions and atmospheric processes. Here we combined the analysis of radiocarbon and the stable isotope 13C to investigate the sources and formation of carbonaceous aerosols collected in two Chinese megacities (Beijing and Xi'an) during severe haze events of a "red alarm"level from December 2016 to January 2017. The haze periods with daily PM2:5 concentrations as high as ∼400 μgm-3 were compared to subsequent clean periods (i.e., PM2:5 less than median concentrations during the winter 2016/2017) with PM2:5 concentrations below 100 μgm-3 in Xi'an and below 20 μgm-3 in Beijing. In Xi'an, liquid fossil fuel combustion was the dominant source of elemental carbon (EC; 44 %-57 %), followed by biomass burning (25 %-29 %) and coal combustion (17 %-29 %). In Beijing, coal combustion contributed 45 %-61% of EC, and biomass burning (17 %-24 %) and liquid fossil fuel combustion (22 %-33 %) contributed less. Non-fossil sources contributed 51 %-56% of organic carbon (OC) in Xi'an, and fossil sources contributed 63 %-69% of OC in Beijing. Secondary OC (SOC) was largely contributed by non-fossil sources in Xi'an (56∼6 %) and by fossil sources in Beijing (75∼10 %), especially during haze periods. The fossil vs. non-fossil contributions to OC and EC did not change drastically during haze events in both Xi'an and Beijing. However, compared to clean periods, the contribution of coal combustion to EC during haze periods increased in Xi'an and decreased in Beijing. During clean periods, primary OC from biomass burning and fossil sources constituted ∼70% of OC in Xi'an and ∼53% of OC in Beijing. From clean to haze periods, the contribution of SOC to total OC increased in Xi'an but decreased in Beijing, suggesting that the contribution of secondary organic aerosol formation to increased OC during haze periods was more efficient in Xi'an than in Beijing. In Beijing, the high SOC fraction in total OC during clean periods was mainly due to an elevated contribution from non-fossil SOC. In Xi'an, a slight day-night difference was observed during the clean period with enhanced fossil contributions to OC and EC during the day. This day-night difference was negligible during severe haze periods, likely due to the enhanced accumulation of pollutants under stagnant weather conditions.
UR - http://www.scopus.com/inward/record.url?scp=85098128174&partnerID=8YFLogxK
U2 - 10.5194/acp-20-16041-2020
DO - 10.5194/acp-20-16041-2020
M3 - Article
AN - SCOPUS:85098128174
SN - 1680-7316
VL - 20
SP - 16041
EP - 16053
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 24
M1 - 823
ER -