Meta Learning Text-to-Speech Synthesis in over 7000 Languages

Florian Lux*, Sarina Meyer, Lyonel Behringer, Frank Zalkow, Phat Do, Matt Coler, Emanuel A. P. Habets, Ngoc Thang Vu

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

23 Downloads (Pure)

Samenvatting

In this work, we take on the challenging task of building a single text-to-speech synthesis system that is capable of generating speech in over 7000 languages, many of which lack sufficient data for traditional TTS development. By leveraging a novel integration of massively multilingual pretraining and meta learning to approximate language representations, our approach enables zero-shot speech synthesis in languages without any available data. We validate our system's performance through objective measures and human evaluation across a diverse linguistic landscape. By releasing our code and models publicly, we aim to empower communities with limited linguistic resources and foster further innovation in the field of speech technology.
Originele taal-2English
TitelProceedings of Interspeech 2024
UitgeverijISCA
Pagina's4958-4962
Aantal pagina's5
DOI's
StatusPublished - 2024
EvenementInterspeech 2024 - Kos, Greece
Duur: 1-sep.-20245-sep.-2024

Conference

ConferenceInterspeech 2024
Land/RegioGreece
StadKos
Periode01/09/202405/09/2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Meta Learning Text-to-Speech Synthesis in over 7000 Languages'. Samen vormen ze een unieke vingerafdruk.

Citeer dit