Meta Learning Text-to-Speech Synthesis in over 7000 Languages

Florian Lux, Sarina Meyer, Lyonel Behringer, Frank Zalkow, Phat Do, Matt Coler, Emanuël A. P. Habets, Ngoc Thang Vu

Onderzoeksoutput: VoordrukAcademic

8 Downloads (Pure)

Samenvatting

In this work, we take on the challenging task of building a single text-to-speech synthesis system that is capable of generating speech in over 7000 languages, many of which lack sufficient data for traditional TTS development. By leveraging a novel integration of massively multilingual pretraining and meta learning to approximate language representations, our approach enables zero-shot speech synthesis in languages without any available data. We validate our system's performance through objective measures and human evaluation across a diverse linguistic landscape. By releasing our code and models publicly, we aim to empower communities with limited linguistic resources and foster further innovation in the field of speech technology.
Originele taal-2English
UitgeverarXiv
Aantal pagina's5
DOI's
StatusSubmitted - 10-jun.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Meta Learning Text-to-Speech Synthesis in over 7000 Languages'. Samen vormen ze een unieke vingerafdruk.
  • Meta Learning Text-to-Speech Synthesis in over 7000 Languages

    Lux, F., Meyer, S., Behringer, L., Zalkow, F., Do, P., Coler, M., Habets, E. A. P. & Vu, N. T., 2024, Proceedings of Interspeech 2024. ISCA, blz. 4958-4962 5 blz.

    OnderzoeksoutputAcademicpeer review

    Open Access
    Bestand
    23 Downloads (Pure)

Citeer dit