TY - JOUR
T1 - Microenvironment-responsive nanomedicines
T2 - a promising direction for tissue regeneration
AU - Xiong, Yuan
AU - Mi, Bo Bin
AU - Shahbazi, Mohammad Ali
AU - Xia, Tian
AU - Xiao, Jun
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
AB - Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
KW - Bone
KW - Immunomodulation
KW - Microenvironment
KW - Nanomedicine
KW - Repair
KW - Tissue regeneration
UR - http://www.scopus.com/inward/record.url?scp=85206960882&partnerID=8YFLogxK
U2 - 10.1186/s40779-024-00573-0
DO - 10.1186/s40779-024-00573-0
M3 - Review article
C2 - 39434177
AN - SCOPUS:85206960882
SN - 2095-7467
VL - 11
JO - Military Medical Research
JF - Military Medical Research
M1 - 69
ER -