Minimal delaunay triangulations of hyperbolic surfaces

Matthijs Ebbens*, Hugo Parlier, Gert Vegter

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

20 Downloads (Pure)

Samenvatting

Motivated by recent work on Delaunay triangulations of hyperbolic surfaces, we consider the minimal number of vertices of such triangulations. First, we show that every hyperbolic surface of genus g has a simplicial Delaunay triangulation with O(g) vertices, where edges are given by distance paths. Then, we construct a class of hyperbolic surfaces for which the order of this bound is optimal. Finally, to give a general lower bound, we show that the Ω(√g) lower bound for the number of vertices of a simplicial triangulation of a topological surface of genus g is tight for hyperbolic surfaces as well.

Originele taal-2English
Titel37th International Symposium on Computational Geometry, SoCG 2021
RedacteurenKevin Buchin, Eric Colin de Verdiere
UitgeverijSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Aantal pagina's16
ISBN van elektronische versie9783959771849
DOI's
StatusPublished - 1-jun.-2021
Evenement37th International Symposium on Computational Geometry, SoCG 2021 - Virtual, Buffalo, United States
Duur: 7-jun.-202111-jun.-2021

Publicatie series

NaamLeibniz International Proceedings in Informatics, LIPIcs
Volume189
ISSN van geprinte versie1868-8969

Conference

Conference37th International Symposium on Computational Geometry, SoCG 2021
Land/RegioUnited States
StadVirtual, Buffalo
Periode07/06/202111/06/2021

Citeer dit