Model order reduction for the 1D Boltzmann-BGK equation: identifying intrinsic variables using neural networks

Julian Koellermeier*, Philipp Krah, Julius Reiss, Zachary Schellin

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

74 Downloads (Pure)

Samenvatting

Kinetic equations are crucial for modeling non-equilibrium phenomena, but their computational complexity is a challenge. This paper presents a data-driven approach using reduced order models (ROM) to efficiently model non-equilibrium flows in kinetic equations by comparing two ROM approaches: proper orthogonal decomposition (POD) and autoencoder neural networks (AE). While AE initially demonstrate higher accuracy, POD’s precision improves as more modes are considered. Notably, our work recognizes that the classical POD model order reduction approach, although capable of accurately representing the non-linear solution manifold of the kinetic equation, may not provide a parsimonious model of the data due to the inherently non-linear nature of the data manifold. We demonstrate how AEs are used in finding the intrinsic dimension of a system and to allow correlating the intrinsic quantities with macroscopic quantities that have a physical interpretation.

Originele taal-2English
Artikelnummer16
Aantal pagina's24
TijdschriftMicrofluidics and Nanofluidics
Volume28
Nummer van het tijdschrift3
DOI's
StatusPublished - mrt.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Model order reduction for the 1D Boltzmann-BGK equation: identifying intrinsic variables using neural networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit