Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler

Marco Grzegorczyk*, Dirk Husmeier, Kieron D. Edwards, Peter Ghazal, Andrew J. Millar

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

58 Citaten (Scopus)

Samenvatting

Method: The objective of the present article is to propose and evaluate a probabilistic approach based on Bayesian networks for modelling non-homogeneous and non-linear gene regulatory processes. The method is based on a mixture model, using latent variables to assign individual measurements to different classes. The practical inference follows the Bayesian paradigm and samples the network structure, the number of classes and the assignment of latent variables from the posterior distribution with Markov Chain Monte Carlo (MCMC), using the recently proposed allocation sampler as an alternative to RJMCMC.

Results: We have evaluated the method using three criteria: network reconstruction, statistical significance and biological plausibility. In terms of network reconstruction, we found improved results both for a synthetic network of known structure and for a small real regulatory network derived from the literature. We have assessed the statistical significance of the improvement on gene expression time series for two different systems (viral challenge of macrophages, and circadian rhythms in plants), where the proposed new scheme tends to outperform the classical BGe score. Regarding biological plausibility, we found that the inference results obtained with the proposed method were in excellent agreement with biological findings, predicting dichotomies that one would expect to find in the studied systems.

Originele taal-2English
Pagina's (van-tot)2071-2078
Aantal pagina's8
TijdschriftBioinformatics
Volume24
Nummer van het tijdschrift18
DOI's
StatusPublished - 15-sep.-2008

Vingerafdruk

Duik in de onderzoeksthema's van 'Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler'. Samen vormen ze een unieke vingerafdruk.

Citeer dit