Modular invariants for genus 3 hyperelliptic curves

Sorina Ionica*, Pinar Kilicer, Kristin Lauter, Elisa Lorenzo Garcia, Maike Massierer, Adelina Manzateanu, Christelle Vincent

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
299 Downloads (Pure)

Samenvatting

In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary oc-tics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the value of these modular functions at CM points of the Siegel upper-half space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM.
Originele taal-2English
Aantal pagina's22
TijdschriftResearch in Number Theory
Volume5
Nummer van het tijdschrift9
DOI's
StatusPublished - 2-jan.-2019

Citeer dit