Monotone convergence theorems for semi-bounded operators and forms with applications

Jussi Behrndt*, Seppo Hassi, Henk de Snoo, Rudi Wietsma

*Corresponding author voor dit werk

    Onderzoeksoutput: ArticleAcademicpeer review

    19 Citaten (Scopus)
    10 Downloads (Pure)

    Samenvatting

    Let H(n) be a monotone sequence of non-negative self-adjoint operators or relations in a Hilbert space. Then there exists a self-adjoint relation H(infinity) such that H(n) converges to H(infinity) in the strong resolvent; sense. This result and related limit results are explored in detail and new simple proofs are presented. The corresponding statements for monotone sequences of semi-bounded closed forms are established as immediate consequences. Applications and examples, illustrating the general results; include sequences of multiplication operators. Sturm-Lionville operators with increasing potentials, forms associated with Krein-Feller differential operators, singular perturbations of non-negative self-adjoint operators and the characterization of the Friedrichs and Krein-von Neumann extensions of a non-negative operator or relation.

    Originele taal-2English
    Pagina's (van-tot)927-951
    Aantal pagina's25
    TijdschriftProceedings of the royal society of edinburgh section a-Mathematics
    Volume140
    StatusPublished - 2010

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Monotone convergence theorems for semi-bounded operators and forms with applications'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit