Samenvatting
Regulatory T cells (T-regs) have shown great promise as a means of cellular therapy in a multitude of allo- and auto-immune diseases-due in part to their immunosuppressive potency. Nevertheless, the clinical efficacy of human T-regs in patients has been limited by their poor in vivo homeostasis. To avert apoptosis, T-regs require stable antigenic (CD3 zeta/T-cell-receptor-mediated), co-stimulatory (CD28-driven), and cytokine (IL-2-dependent) signaling. Notably, this sequence of signals supports an activated T-reg phenotype that includes a high expression of granzymes, particularly granzyme B (GrB). Previously, we have shown that aside from the functional effects of GrB in lysing target cells to modulate allo-immunity, GrB can leak out of the intracellular lysosomal granules of host T-regs, initiating pro-apoptotic pathways. Here, we assessed the role of inhibiting mechanistic target of rapamycin complex 1 (mTORC1), a recently favored drug target in the transplant field, in regulating human T-reg apoptosis via GrB. Using ex vivo models of human T-reg culture and a humanized mouse model of human skin allotransplantation, we found that by inhibiting mTORC1 using rapamycin, intracytoplasmic expression and functionality of GrB diminished in host T-regs; lowering human T-reg apoptosis by in part decreasing the phosphorylation of S6K and c-Jun. These findings support the already clinically validated effects of mTORC1 inhibition in patients, most notably their stabilization of T-reg bioactivity and in vivo homeostasis.
Originele taal-2 | English |
---|---|
Artikelnummer | 899975 |
Aantal pagina's | 11 |
Tijdschrift | Frontiers in Immunology |
Volume | 13 |
DOI's | |
Status | Published - 10-jun.-2022 |