Multivariate Trend-Cycle-Seasonal Decompositions with Correlated Innovations

Jing Tian, Jan P.A.M. Jacobs*, Denise R. Osborn

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

32 Downloads (Pure)

Samenvatting

Multivariate analysis can help to focus on important phenomena, including trend and cyclical movements, but any economic information in seasonality is typically ignored. The present paper aims to more fully exploit time series information through a multivariate unobserved component model for quarterly data that exhibits seasonality together with cross-variable component correlations. We show that economic restrictions, including common trends, common cycles and common seasonals can aid identification. The approach is illustrated using Italian GDP and consumption data.

Originele taal-2English
Pagina's (van-tot)1260-1289
Aantal pagina's30
TijdschriftOxford Bulletin of Economics and Statistics
Volume86
Nummer van het tijdschrift5
Vroegere onlinedatum25-feb.-2024
DOI's
StatusPublished - okt.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Multivariate Trend-Cycle-Seasonal Decompositions with Correlated Innovations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit