On Discrete-Time Polynomial Dynamical Systems On Hypergraphs

OnderzoeksoutputAcademicpeer review

38 Downloads (Pure)

Samenvatting

This paper studies the stability of discrete-time polynomial dynamical systems on hypergraphs by utilizing the Perron–Frobenius theorem for nonnegative tensors with respect to the tensors’ Z-eigenvalues and Z-eigenvectors. Firstly, for a multilinear polynomial system on a uniform hypergraph, we study the stability of the origin of the corresponding systems. Next, we extend our results to non-homogeneous polynomial systems on non-uniform hypergraphs. We confirm that the local stability of any discrete-time polynomial system is in general dominated by pairwise terms. Assuming that the origin is locally stable, we construct a conservative (but explicit) region of attraction from the system parameters. Finally, we validate our results via some numerical examples.

Originele taal-2English
Pagina's (van-tot)1078-1083
Aantal pagina's6
TijdschriftIEEE Control Systems Letters
Volume8
Vroegere onlinedatum28-mei-2024
DOI's
StatusPublished - 1-jul.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'On Discrete-Time Polynomial Dynamical Systems On Hypergraphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit