On estimators for truncated height samples

Jan Jacobs*, Tomek Katzur, Vincent Tassenaar

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

6 Citaten (Scopus)

Samenvatting

Statistical inference from truncated height data is often based on distributional assumptions. In this paper we analyze a data set of over 23,000 conscript height observations, covering nearly all conscripts in Drenthe, a province of the Netherlands, over the period 1826-1860, The data do not satisfy the normality assumption. We demonstrate that the ML estimators of the mean proposed for normally distributed data do not yield satisfactory results. We propose a new estimator that exploits the relationship between the conditional mean of the observations above the minimum height requirement and the conditional mean and proportion of conscripts below the minimum height requirement. (C) 2007 Elsevier B.V. All rights reserved.

Originele taal-2English
Pagina's (van-tot)43-56
Aantal pagina's14
TijdschriftEconomics & Human Biology
Volume6
Nummer van het tijdschrift1
DOI's
StatusPublished - mrt.-2008

Vingerafdruk

Duik in de onderzoeksthema's van 'On estimators for truncated height samples'. Samen vormen ze een unieke vingerafdruk.

Citeer dit