On Extended Model Order Reduction for Linear Time Delay Systems

Sajad Naderi Lordejani*, Bart Besselink, Antoine Chaillet, Nathan van de Wouw

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review


This chapter presents a so-called extended model-reduction technique for linear delay differential equations. The presented technique preserves the infinite-dimensional nature of the system and facilitates the preservation of properties such as system parameterizations (uncertainties). It is proved in this chapter that the extended model-reduction technique also preserves stability properties and provides a guaranteed a-priori bound on the reduction error. The reduction technique relies on the solution of matrix inequalities that characterize controllability and observability properties for time delay systems. This work presents conditions on the feasibility of these inequalities, and studies the applicability of the extended model reduction to a spatio-temporal model of neuronal activity, known as delay neural fields. Lastly, it discusses the relevance of this technique in the scope of model reduction of uncertain time delay systems, which is supported by a numerical example.

Originele taal-2English
TitelInternational Series of Numerical Mathematics
Redacteuren P. Benner , T Breiten, H. Faßbender , M. Hinze , T. Stykel, R. Zimmermann
Plaats van productieCham
Aantal pagina's25
ISBN van elektronische versie978-3-030-72983-7
ISBN van geprinte versie978-3-030-72982-0
StatusPublished - 2021

Publicatie series

NaamInternational Series of Numerical Mathematics
ISSN van geprinte versie0373-3149
ISSN van elektronische versie2296-6072

Citeer dit