On multivariate Gaussian copulas

Ivan Zezula*

*Corresponding author voor dit werk

    Onderzoeksoutput: ArticleAcademicpeer review

    46 Citaten (Scopus)

    Samenvatting

    Gaussian copulas are handy tool in many applications. However, when dimension of data is large, there are too many parameters to estimate. Use of special variance structure can facilitate the task. In many cases, especially when different data types are used. Pearson correlation is not a suitable measure of dependence. We study the properties of Kendall and Spearman correlation coefficients-which have better properties and are invariant under monotone transformations-used at the place of Pearson coefficients. Spearman correlation coefficient appears to be more suitable for use in such complex applications. (C) 2009 Elsevier B.V. All rights reserved.

    Originele taal-2English
    Pagina's (van-tot)3942-3946
    Aantal pagina's5
    TijdschriftJournal of Statistical Planning and Inference
    Volume139
    Nummer van het tijdschrift11
    DOI's
    StatusPublished - 1-nov.-2009
    Evenement8th Tartu Conference on Multivariate Statistics/6th Conference on Multivariate Distributions with Fixed Marginals - Tartu, Estonia
    Duur: 26-jun.-200729-jun.-2007

    Vingerafdruk

    Duik in de onderzoeksthema's van 'On multivariate Gaussian copulas'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit