On-surface synthesis of a two-dimensional porous coordination network: Unraveling adsorbate interactions

Manfred Matena, Jonas Björk, Markus Wahl, Tien-Lin Lee, Jörg Zegenhagen, Lutz H. Gade, Thomas A. Jung, Mats Persson, Meike Stöhr

OnderzoeksoutputAcademicpeer review

44 Citaten (Scopus)
792 Downloads (Pure)

Samenvatting

We present a detailed experimental and theoretical characterization of the adsorption of the perylene derivative 4,9-diaminoperylene-quinone-3,10-diimine (DPDI) on Cu(111) and compare it to its threefold dehydrogenated derivative 3deh-DPDI, which forms in a surface reaction upon annealing. While DPDI itself does not give rise to long-range ordered structures due to lack of appropriate functional groups, 3deh-DPDI acts as an exoligand in a Cu-coordinated honeycomb network on Cu(111). The main focus of this work lies on the analysis of intermolecular and molecule-substrate interactions by combining results from scanning tunneling microscopy, x-ray photoelectron spectroscopy, x-ray standing wave measurements, and density functional theory. We show, in particular, that the interactions between metal atoms and organic ligands effectively weaken the molecule-surface interactions for 3deh-DPDI leading to an increase in molecule-substrate distances compared to the DPDI precursor. Our experimental findings also shed light on the applicability of current theories, namely van der Waals corrections to density functional theory.
Originele taal-2English
Artikelnummer125408
Aantal pagina's8
TijdschriftPhysical Review. B: Condensed Matter and Materials Physics
Volume90
DOI's
StatusPublished - 5-sep-2014

Citeer dit