On the Contractibility of Random Vietoris–Rips Complexes

Tobias Müller, Matěj Stehlík*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

50 Downloads (Pure)

Samenvatting

We show that the Vietoris–Rips complex R(n, r) built over n points sampled at random from a uniformly positive probability measure on a convex body K⊆ Rd is a.a.s. contractible when r≥ c(ln n/ n) 1/d for a certain constant that depends on K and the probability measure used. This answers a question of Kahle (Discrete Comput. Geom. 45(3), 553–573 (2011)). We also extend the proof to show that if K is a compact, smooth d-manifold with boundary—but not necessarily convex—then R(n, r) is a.a.s. homotopy equivalent to K when c1(ln n/ n) 1/d≤ r≤ c2 for constants c1= c1(K) , c2= c2(K). Our proofs expose a connection with the game of cops and robbers.

Originele taal-2English
Pagina's (van-tot)1139–1156
Aantal pagina's18
TijdschriftDiscrete and Computational Geometry
Volume69
Vroegere onlinedatum28-mrt.-2022
DOI's
StatusPublished - 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'On the Contractibility of Random Vietoris–Rips Complexes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit