On the decomposability of mod 2 cohomological invariants of Weyl groups

Christian Hirsch*

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review


We compute the invariants of Weyl groups in mod 2 Milnor K-theory and more general cycle modules, which are annihilated by 2. Over a base field of characteristic coprime to the group order, the invariants decompose as direct sums of the coefficient module. All basis elements are induced either by Stiefel-Whitney classes or specific invariants in the Witt ring. The proof is based on Serre's splitting principle that guarantees detection of invariants on elementary abelian 2-subgroups generated by reflections.

Originele taal-2English
Pagina's (van-tot)765-809
Aantal pagina's45
TijdschriftCommentarii Mathematici Helvetici
Nummer van het tijdschrift4
StatusPublished - 2020

Citeer dit