On the expressiveness and decidability of higher-order process calculi

Ivan Lanese, Jorge A. Perez, Davide Sangiorgi*, Alan Schmitt

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

34 Citaten (Scopus)
28 Downloads (Pure)

Samenvatting

In higher-order process calculi, the values exchanged in communications may contain processes. A core calculus of higher-order concurrency is studied; it has only the operators necessary to express higher-order communications: input prefix, process output, and parallel composition. By exhibiting a deterministic encoding of Minsky machines, the calculus is shown to be Turing complete. Therefore its termination problem is undecidable. Strong bisimilarity, however, is shown to be decidable. Furthermore, the main forms of strong bisimilarity for higher-order processes (higher-order bisimilarity, context bisimilarity, normal bisimilarity, barbed congruence) coincide. They also coincide with their asynchronous versions. A sound and complete axiomatization of bisimilarity is given. Finally, bisimilarity is shown to become undecidable if at least four static (i.e., top-level) restrictions are added to the calculus. (C) 2010 Elsevier Inc. All rights reserved.

Originele taal-2English
Pagina's (van-tot)198-226
Aantal pagina's29
TijdschriftInformation and Computation
Volume209
Nummer van het tijdschrift2
DOI's
StatusPublished - feb-2011
Extern gepubliceerdJa

Citeer dit