Samenvatting
Glaucoma is a chronic eye disease characterized by thinning of the retina, death of ganglion cells, and progressive loss of vision, eventually leading to blindness. The prevalence of glaucoma is estimated at 1-3% of those over 40 years old. With a constantly aging population, this number is expected to increase significantly over the next 10 years. Even with treatment, about 15% of people with glaucoma currently develop residual vision or tunnel vision and eventually become blind or partially sighted.
The mechanisms behind ganglion cell death are poorly understood. Elevated eye pressure is the main risk factor for glaucoma, but treatment in the form of medication, laser, or surgery can only slow the decline, not stop it. In addition, high intraocular pressure is neither necessary nor sufficient for the development of glaucoma, indicating the existence of other unknown risk factors.
It has been established that the death of ganglion cells results in a decreased oxygen demand and a concomitant decrease in blood flow. However, there is also a hypothesis that reduced or unstable blood supply is not only a consequence, but also a cause of glaucoma. This is known as the ‘chicken-egg’ dilemma in glaucoma. It is supported by the observation that the risk of developing glaucoma is higher in people with very low blood pressure (sometimes even as a result of overtreatment of high blood pressure).
This dissertation is an attempt to methodically examine whether blood pressure can be linked to changes in the retina that could suggest susceptibility to glaucoma. For this purpose, we analyze epidemiological data from the Groningen Longitudinal Glaucoma Study, we use advanced imaging techniques to model the microcirculation, and we describe its relationship with the neural structure and oxygen consumption of the retina. We provide evidence leaning towards the existence of a vascular component, likely pertinent to glaucoma.
The mechanisms behind ganglion cell death are poorly understood. Elevated eye pressure is the main risk factor for glaucoma, but treatment in the form of medication, laser, or surgery can only slow the decline, not stop it. In addition, high intraocular pressure is neither necessary nor sufficient for the development of glaucoma, indicating the existence of other unknown risk factors.
It has been established that the death of ganglion cells results in a decreased oxygen demand and a concomitant decrease in blood flow. However, there is also a hypothesis that reduced or unstable blood supply is not only a consequence, but also a cause of glaucoma. This is known as the ‘chicken-egg’ dilemma in glaucoma. It is supported by the observation that the risk of developing glaucoma is higher in people with very low blood pressure (sometimes even as a result of overtreatment of high blood pressure).
This dissertation is an attempt to methodically examine whether blood pressure can be linked to changes in the retina that could suggest susceptibility to glaucoma. For this purpose, we analyze epidemiological data from the Groningen Longitudinal Glaucoma Study, we use advanced imaging techniques to model the microcirculation, and we describe its relationship with the neural structure and oxygen consumption of the retina. We provide evidence leaning towards the existence of a vascular component, likely pertinent to glaucoma.
Originele taal-2 | English |
---|---|
Kwalificatie | Doctor of Philosophy |
Toekennende instantie |
|
Begeleider(s)/adviseur |
|
Datum van toekenning | 7-jul.-2022 |
Plaats van publicatie | [Groningen] |
Uitgever | |
Gedrukte ISBN's | 978-94-6419-520-0 |
DOI's | |
Status | Published - 2022 |