On the purity of the free boundary condition Potts measure on random trees

Marco Formentin, Christof Kulske*

*Corresponding author voor dit werk

    Onderzoeksoutput: ArticleAcademicpeer review

    8 Citaten (Scopus)
    262 Downloads (Pure)

    Samenvatting

    We consider the free boundary condition Gibbs measure of the Potts model on a random tree. We provide an explicit temperature interval below the ferromagnetic transition temperature for which this measure is extremal, improving older bounds of Mossel and Peres. In information theoretic language extremality of the Gibbs measure corresponds to non-reconstructability for symmetric q-ary channels. The bounds for the corresponding threshold value of the inverse temperature are optimal for the Ising model and differ from the Kesten Stigum bound by only 1.50% in the case q = 3 and 3.65% for q = 4, independently of d. Our proof uses an iteration of random boundary entropies from the outside of the tree to the inside, along with a symmetrization argument. (C) 2009 Elsevier B.V. All rights reserved.

    Originele taal-2English
    Pagina's (van-tot)2992-3005
    Aantal pagina's14
    TijdschriftStochastic processes and their applications
    Volume119
    Nummer van het tijdschrift9
    DOI's
    StatusPublished - sep.-2009

    Vingerafdruk

    Duik in de onderzoeksthema's van 'On the purity of the free boundary condition Potts measure on random trees'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit