On the splitting principle for cohomoligical invariants of reflection groups

Stefan Gille*, Christian Hirsch

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
59 Downloads (Pure)

Samenvatting

Let k0 be a field of characteristic not two, (V, b) a finite-dimensional regular bilinear space over k0, and W a subgroup of the orthogonal group of (V, b) with the property that the subring of W-invariants of the symmetric algebra of V is a polynomial algebra over k0. We prove that Serre’s splitting principle holds for cohomological invariants of W with values in Rost’s cycle modules.

Originele taal-2English
Pagina's (van-tot)1261–1285
Aantal pagina's25
TijdschriftTransformation Groups
Volume27
Vroegere onlinedatumfeb.-2021
DOI's
StatusPublished - dec.-2022

Vingerafdruk

Duik in de onderzoeksthema's van 'On the splitting principle for cohomoligical invariants of reflection groups'. Samen vormen ze een unieke vingerafdruk.

Citeer dit