Optimal time-domain moment matching with partial placement of poles and zeros

Tudor Ionescu, Orest Iftime, I. Necoara

OnderzoeksoutputAcademicpeer review

1 Citaat (Scopus)
104 Downloads (Pure)

Samenvatting

In this paper we consider a minimal, linear, time-invariant (LTI) system of order n, large. Our goal is to compute an approximation of order ν < n that simultaneously matches ν moments, has ℓ poles and k zeros fixed, with ℓ + k < ν, and achieves minimal H2 norm of the approximation error. For this, in the family of ν order parametrized models that match ν moments we impose ℓ+k linear constraints yielding a subfamily of models with ℓ poles and k zeros imposed. Then, in the subfamily of ν order models matching ν moments, with ℓ poles and k zeros imposed we propose an optimization problem that provides the model yielding the minimal H2-norm of the approximation error. We analyze the first-order optimality conditions of this optimization problem and compute explicitly the gradient of the objective function in terms of the controllability and the observability Gramians of the error system. We then propose a gradient method that finds the (optimal) stable model, with fixed ℓ poles and k zeros.

Originele taal-2English
Titel2020 European Control Conference (ECC)
UitgeverijIEEE
Pagina's1769-1774
Aantal pagina's6
ISBN van elektronische versie978-3-90714-402-2
ISBN van geprinte versie978-1-7281-8813-3
DOI's
StatusPublished - mei-2020
Evenement2020 European Control Conference (ECC) - Saint Petersburg, Russian Federation
Duur: 12-mei-202015-mei-2020

Conference

Conference2020 European Control Conference (ECC)
Land/RegioRussian Federation
StadSaint Petersburg
Periode12/05/202015/05/2020

Vingerafdruk

Duik in de onderzoeksthema's van 'Optimal time-domain moment matching with partial placement of poles and zeros'. Samen vormen ze een unieke vingerafdruk.

Citeer dit