p34Cdc28-Mediated Control of Cln3 Cyclin Degradation

Julia Yaglom, Maarten H.K. Linskens, Seth Sadis, David M. Rubin, Bruce Futcher, Daniel Finley

OnderzoeksoutputAcademicpeer review

251 Citaten (Scopus)
67 Downloads (Pure)

Samenvatting

Cln3 cyclin of the budding yeast Saccharomyces cerevisiae is a key regulator of Start, a cell cycle event in G1 phase at which cells become committed to division. The time of Start is sensitive to Cln3 levels, which in turn depend on the balance between synthesis and rapid degradation. Here we report that the breakdown of Cln3 is ubiquitin dependent and involves the ubiquitin-conjugating enzyme Cdc34 (Ubc3). The C-terminal tail of Cln3 functions as a transferable signal for degradation. Sequences important for Cln3 degradation are spread throughout the tail and consist largely of PEST elements, which have been previously suggested to target certain proteins for rapid turnover. The Cln3 tail also appears to contain multiple phosphorylation sites, and both phosphorylation and degradation of Cln3 are deficient in a cdc28ts mutant at the nonpermissive temperature. A point mutation at Ser-468, which lies within a Cdc28 kinase consensus site, causes approximately fivefold stabilization of a Cln3–β-galactosidase fusion protein that contains a portion of the Cln3 tail and strongly reduces the phosphorylation of this protein. These data indicate that the degradation of Cln3 involves CDC28-dependent phosphorylation events.
Originele taal-2English
Pagina's (van-tot)731-741
Aantal pagina's11
TijdschriftMolecular and Cellular Biology
Volume15
Nummer van het tijdschrift2
DOI's
StatusPublished - feb-1995
Extern gepubliceerdJa

Citeer dit