TY - JOUR
T1 - Pectins from various sources inhibit galectin-3-related cardiac fibrosis
AU - Pozder geb. Gehlken, Carolin
AU - Rogier van der Velde, A.
AU - Meijers, Wouter C.
AU - Silljé, Herman H.W.
AU - Muntendam, Pieter
AU - Dokter, Martin M.
AU - van Gilst, Wiek H.
AU - Schols, Henk A.
AU - de Boer, Rudolf A.
N1 - Funding Information:
Dr. Meijers is supported by the Mandema-Stipendium of the Junior Scientific Masterclass 2020-10, University Medical Center Groningen and by the Netherlands Heart Foundation (Dekkerbeurs 2021)
Funding Information:
Dr. de Boer is supported by the Netherlands Heart Foundation (CVON SHE-PREDICTS-HF, grant 2017-21; CVON RED-CVD, grant 2017-11; CVON PREDICT2, grant 2018-30; and CVON DOUBLE DOSE, grant 2020B005), by a grant from the leDucq Foundation (Cure PhosphoLambaN induced Cardiomyopathy (Cure-PLaN), and by a grant from the European Research Council (ERC CoG 818715, SECRETE-HF).
Publisher Copyright:
© 2021 The Author(s)
PY - 2022/1
Y1 - 2022/1
N2 - Purpose of the study: A major challenge in cardiology remains in finding a therapy for cardiac fibrosis. Inhibition of galectin-3 with pectins attenuates fibrosis in animal models of heart failure. The purpose of this study is to identify pectins with the strongest galectin-3 inhibitory capacity. We evaluated the in vitro inhibitory capacity, identified potent pectins, and tested if this potency could be validated in a mouse model of myocardial fibrosis. Methods: Various pectin fractions were screened in vitro. Modified rhubarb pectin (EMRP) was identified as the most potent inhibitor of galectin-3 and compared to the well-known modified citrus pectin (MCP). Our findings were validated in a mouse model of myocardial fibrosis, which was induced by angiotensin II (Ang II) infusion. Results: Ang II infusion was associated with a 4–5-fold increase in fibrosis signal in the tissue of the left ventricle, compared to the control group (0•22±0•10 to 1•08±0•53%; P < 0•001). After treatment with rhubarb pectin, fibrosis was reduced by 57% vs. Ang II alone while this reduction was 30% with the well-known MCP (P = NS, P < 0•05). Treatment was associated with a reduced cardiac inflammatory response and preserved cardiac function. Conclusion: The galectin-3 inhibitor natural rhubarb pectin has a superior inhibitory capacity over established pectins, substantially attenuates cardiac fibrosis, and preserves cardiac function in vivo. Bioactive pectins are natural sources of galectin-3 inhibitors and may be helpful in the prevention of heart failure or other diseases characterized by fibrosis. Funding: Dr. Meijers is supported by the Mandema-Stipendium of the Junior Scientific Masterclass 2020-10, University Medical Center Groningen and by the Netherlands Heart Foundation (Dekkerbeurs 2021)Dr. de Boer is supported by the Netherlands Heart Foundation (CVON SHE-PREDICTS-HF, grant 2017-21; CVON RED-CVD, grant 2017-11; CVON PREDICT2, grant 2018-30; and CVON DOUBLE DOSE, grant 2020B005), by a grant from the leDucq Foundation (Cure PhosphoLambaN induced Cardiomyopathy (Cure-PLaN), and by a grant from the European Research Council (ERC CoG 818715, SECRETE-HF).
AB - Purpose of the study: A major challenge in cardiology remains in finding a therapy for cardiac fibrosis. Inhibition of galectin-3 with pectins attenuates fibrosis in animal models of heart failure. The purpose of this study is to identify pectins with the strongest galectin-3 inhibitory capacity. We evaluated the in vitro inhibitory capacity, identified potent pectins, and tested if this potency could be validated in a mouse model of myocardial fibrosis. Methods: Various pectin fractions were screened in vitro. Modified rhubarb pectin (EMRP) was identified as the most potent inhibitor of galectin-3 and compared to the well-known modified citrus pectin (MCP). Our findings were validated in a mouse model of myocardial fibrosis, which was induced by angiotensin II (Ang II) infusion. Results: Ang II infusion was associated with a 4–5-fold increase in fibrosis signal in the tissue of the left ventricle, compared to the control group (0•22±0•10 to 1•08±0•53%; P < 0•001). After treatment with rhubarb pectin, fibrosis was reduced by 57% vs. Ang II alone while this reduction was 30% with the well-known MCP (P = NS, P < 0•05). Treatment was associated with a reduced cardiac inflammatory response and preserved cardiac function. Conclusion: The galectin-3 inhibitor natural rhubarb pectin has a superior inhibitory capacity over established pectins, substantially attenuates cardiac fibrosis, and preserves cardiac function in vivo. Bioactive pectins are natural sources of galectin-3 inhibitors and may be helpful in the prevention of heart failure or other diseases characterized by fibrosis. Funding: Dr. Meijers is supported by the Mandema-Stipendium of the Junior Scientific Masterclass 2020-10, University Medical Center Groningen and by the Netherlands Heart Foundation (Dekkerbeurs 2021)Dr. de Boer is supported by the Netherlands Heart Foundation (CVON SHE-PREDICTS-HF, grant 2017-21; CVON RED-CVD, grant 2017-11; CVON PREDICT2, grant 2018-30; and CVON DOUBLE DOSE, grant 2020B005), by a grant from the leDucq Foundation (Cure PhosphoLambaN induced Cardiomyopathy (Cure-PLaN), and by a grant from the European Research Council (ERC CoG 818715, SECRETE-HF).
KW - Affinity
KW - Fibrosis
KW - Galectin-3
KW - Heart failure
KW - Inhibitor
KW - Pectin
U2 - 10.1016/j.retram.2021.103321
DO - 10.1016/j.retram.2021.103321
M3 - Article
C2 - 34826684
AN - SCOPUS:85119581119
SN - 2452-3186
VL - 70
JO - Current Research in Translational Medicine
JF - Current Research in Translational Medicine
IS - 1
M1 - 103321
ER -