Photochromism in Ruddlesden-Popper copper-based perovskites: A light-induced change of coordination number at the surface

B. G. H. M. Groeneveld, H. Duim, S. Kahmann, O. De Luca, E. K. Tekelenburg, M. E. Kamminga, L. Protesescu, G. Portale, G. R. Blake, P. Rudolf, M. A. Loi*

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
14 Downloads (Pure)


Ruddlesden-Popper organic-inorganic hybrid copper-based perovskites have been studied for decades owing to a variety of interesting properties, such as thermochromism and piezochromism, and the mechanisms behind these phenomena have been explained. Another possible property of these materials that has seldomly been investigated is photochromism. In this work, the photochromic properties of bis(phenethylammonium) tetrachlorocuprate (also known as phenethylammonium copper chloride) are reported for the first time. This material has attracted scientific interest owing to the fact that it shows both ferroelectric and ferromagnetic behavior. This work highlights the difference in stability between two Ruddlesden-Popper copper-based perovskites - with phenethylammonium (PEA) or methylammonium (MA) as the cations - during external stimuli. Various techniques, such as Raman and X-ray photoelectron spectroscopy, and grazing-incidence wide-angle X-ray scattering, combined with optical studies, were used to investigate the underlying photochemical processes at a molecular level. It is found that for the PEA compound, ultraviolet illumination causes a color change from yellow to brown. This is the result of two independent events, namely a Cu2+ reduction reaction and a transition from an octahedral copper-chloride structure to square-planar CuCl42-. After illumination, the material (brown color) is unstable in air, which is evident from a color change back to yellow. Interestingly, the similar compound bis(methylammonium) tetrachlorocuprate does not display photochromic behavior, which is attributed to the different nature of the two organic cations.

Originele taal-2English
Pagina's (van-tot)15377-15384
Aantal pagina's8
TijdschriftJournal of Materials Chemistry C
Nummer van het tijdschrift43
StatusPublished - 21-nov-2020

Citeer dit