Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression

Thijmen van Vliet, Marta Varela-Eirin, Boshi Wang, Michela Borghesan, Simone M Brandenburg, Rossana Franzin, Konstantinos Evangelou, Marc Seelen, Vassilis Gorgoulis, Marco Demaria*

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

60 Citaten (Scopus)
212 Downloads (Pure)


Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-kappa B signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.

Originele taal-2English
Pagina's (van-tot)2041-+
Aantal pagina's18
TijdschriftMolecular Cell
Nummer van het tijdschrift9
Vroegere onlinedatum5-apr.-2021
StatusPublished - 6-mei-2021

Citeer dit