TY - JOUR
T1 - Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover
AU - van Ijzendoorn, SCD
AU - van der Wouden, JM
AU - Liebisch, G
AU - Schmitz, G
AU - Hoekstra, D
PY - 2004/9
Y1 - 2004/9
N2 - Sphingoid bases have been implicated in various cellular processes including cell growth, apoptosis and cell differentiation. Here, we show that the regulated turnover of sphingoid bases is crucial for cell polarity development, i.e., the biogenesis of apical plasma membrane domains, in well-differentiated hepatic cells. Thus, inhibition of dihydroceramide synthase or sphinganine kinase activity with fumonisin B1 or N,N-dimethylsphingosine, respectively, dramatically perturbs cell polarity development, which is due to increased levels of sphinganine. Consistently, reduction of free sphinganine levels stimulates cell polarity development. Moreover, dihydroceramide synthase, the predominant enzyme responsible for sphinganine turnover, is a target for cell polarity stimulating cAMP/protein kinase A (PKA) signaling cascades. Indeed, electrospray ionization tandem mass spectrometry analyses revealed a significant reduction in sphinganine levels in cAMP/PKA-stimulated cells. These data suggest that sphinganine turnover is critical for and is actively regulated during HepG2 cell polarity development. Previously, we have identified an apical plasma membrane-directed trafficking pathway from the subapical compartment. This transport pathway, which is part of the basolateral-to-apical transcytotic itinerary, plays a crucial role in apical plasma membrane biogenesis. Here, we show that, as a part of the underlying mechanism, the inhibition of dihydroceramide synthase activity and ensuing increased sphinganine levels specifically perturb the activation of this particular pathway in the de novo apical membrane biogenesis.
AB - Sphingoid bases have been implicated in various cellular processes including cell growth, apoptosis and cell differentiation. Here, we show that the regulated turnover of sphingoid bases is crucial for cell polarity development, i.e., the biogenesis of apical plasma membrane domains, in well-differentiated hepatic cells. Thus, inhibition of dihydroceramide synthase or sphinganine kinase activity with fumonisin B1 or N,N-dimethylsphingosine, respectively, dramatically perturbs cell polarity development, which is due to increased levels of sphinganine. Consistently, reduction of free sphinganine levels stimulates cell polarity development. Moreover, dihydroceramide synthase, the predominant enzyme responsible for sphinganine turnover, is a target for cell polarity stimulating cAMP/protein kinase A (PKA) signaling cascades. Indeed, electrospray ionization tandem mass spectrometry analyses revealed a significant reduction in sphinganine levels in cAMP/PKA-stimulated cells. These data suggest that sphinganine turnover is critical for and is actively regulated during HepG2 cell polarity development. Previously, we have identified an apical plasma membrane-directed trafficking pathway from the subapical compartment. This transport pathway, which is part of the basolateral-to-apical transcytotic itinerary, plays a crucial role in apical plasma membrane biogenesis. Here, we show that, as a part of the underlying mechanism, the inhibition of dihydroceramide synthase activity and ensuing increased sphinganine levels specifically perturb the activation of this particular pathway in the de novo apical membrane biogenesis.
KW - TANDEM MASS-SPECTROMETRY
KW - HIGH-DENSITY-LIPOPROTEIN
KW - NIEMANN-PICK DISEASE
KW - SUBAPICAL COMPARTMENT
KW - PLASMA-MEMBRANE
KW - HEPG2 CELLS
KW - HEPATIC CELLS
KW - UP-REGULATION
KW - SPHINGOLIPID METABOLISM
KW - NONVESICULAR TRANSPORT
U2 - 10.1091/mbc.E04-04-0290
DO - 10.1091/mbc.E04-04-0290
M3 - Article
C2 - 15229289
VL - 15
SP - 4115
EP - 4124
JO - Molecular Biology of the Cell
JF - Molecular Biology of the Cell
SN - 1059-1524
IS - 9
ER -