Polynomial normal forms of constrained differential equations with three parameters

H. Jardon-Kojakhmetov*, Henk W. Broer

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

6 Citaten (Scopus)
129 Downloads (Pure)

Samenvatting

We study generic constrained differential equations (CDEs) with three parameters, thereby extending Takens's classification of singularities of such equations. In this approach, the singularities analyzed are the Swallowtail, the Hyperbolic, and the Elliptic Umbilics. We provide polynomial local normal forms of CDEs under topological equivalence. Generic CDEs are important in the study of slow fast (SF) systems. Many properties and the characteristic behavior of the solutions of SF systems can be inferred from the corresponding CDE. Therefore, the results of this paper show a first approximation of the flow of generic SF systems with three slow variables. (C) 2014 Elsevier Inc. All rights reserved.

Originele taal-2English
Pagina's (van-tot)1012-1055
Aantal pagina's44
TijdschriftJournal of Differential Equations
Volume257
Nummer van het tijdschrift4
DOI's
StatusPublished - 15-aug.-2014

Vingerafdruk

Duik in de onderzoeksthema's van 'Polynomial normal forms of constrained differential equations with three parameters'. Samen vormen ze een unieke vingerafdruk.

Citeer dit