Potts Model with Invisible Colors: Random-Cluster Representation and Pirogov–Sinai Analysis

Aernout C.D. van Enter, Giulio Iacobelli, Siamak Taati

Onderzoeksoutputpeer review

8 Citaten (Scopus)
261 Downloads (Pure)


We study a recently introduced variant of the ferromagnetic Potts model consisting of a ferromagnetic interaction among q “visible” colors along with the presence of r non-interacting “invisible” colors. We introduce a random-cluster representation for the model, for which we prove the existence of a first-order transition for any q > 0, as long as r is large enough. When q > 1, the low-temperature regime displays a q-fold symmetry breaking. The proof involves a Pirogov–Sinai analysis applied to this random-cluster representation of the model.
Originele taal-2English
Aantal pagina's42
TijdschriftReviews in Mathematical Physics
Nummer van het tijdschrift2
StatusPublished - mrt.-2012

Citeer dit