Pragmatic Coarse-Graining of Proteins: Models and Applications

Luís Borges-Araújo, Ilias Patmanidis, Akhil P Singh, Lucianna H S Santos, Adam K Sieradzan, Stefano Vanni, Cezary Czaplewski, Sergio Pantano, Wataru Shinoda, Luca Monticelli, Adam Liwo, Siewert J Marrink, Paulo C T Souza*

*Corresponding author voor dit werk

Onderzoeksoutput: Review articlepeer review

42 Citaten (Scopus)
390 Downloads (Pure)

Samenvatting

The molecular details involved in the folding, dynamics, organization, and interaction of proteins with other molecules are often difficult to assess by experimental techniques. Consequently, computational models play an ever-increasing role in the field. However, biological processes involving large-scale protein assemblies or long time scale dynamics are still computationally expensive to study in atomistic detail. For these applications, employing coarse-grained (CG) modeling approaches has become a key strategy. In this Review, we provide an overview of what we call pragmatic CG protein models, which are strategies combining, at least in part, a physics-based implementation and a top-down experimental approach to their parametrization. In particular, we focus on CG models in which most protein residues are represented by at least two beads, allowing these models to retain some degree of chemical specificity. A description of the main modern pragmatic protein CG models is provided, including a review of the most recent applications and an outlook on future perspectives in the field.

Originele taal-2English
Artikelnummere00733
Pagina's (van-tot)7112-7135
Aantal pagina's24
TijdschriftJournal of Chemical Theory and Computation
Volume19
Nummer van het tijdschrift20
Vroegere onlinedatum3-okt.-2023
DOI's
StatusPublished - nov.-2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Pragmatic Coarse-Graining of Proteins: Models and Applications'. Samen vormen ze een unieke vingerafdruk.

Citeer dit