Predicting Slaughter Weight in Pigs with Regression Tree Ensembles

A. Alsahaf, G. Azzopardi, B. Ducro, R. F. Veerkamp, N. Petkov

OnderzoeksoutputAcademicpeer review

5 Citaten (Scopus)

Samenvatting

Domestic pigs vary in the age at which they reach slaughter weight even under the controlled conditions of modern pig farming. Early and accurate estimates of when a pig will reach slaughter weight can lead to logistic efficiency in farms. In this study, we compare four methods in predicting the age at which a pig reaches slaughter weight (120 kg). Namely, we compare the following regression tree-based ensemble methods: random forest (RF), extremely randomized trees (ET), gradient boosted machines (GBM), and XGBoost. Data from 32979 pigs is used, comprising a combination of phenotypic features and estimated breeding values (EBV). We found that the boosting ensemble methods, GBM and XGBoost, achieve lower prediction errors than the parallel ensembles methods, RF and ET. On the other hand, RF and ET have fewer parameters to tune, and perform adequately well with default parameter settings.

Originele taal-2English
TitelApplications of Intelligent Systems - Proceedings of the 1st International APPIS Conference 2018, APPIS 2018
RedacteurenNicolai Petkov, Nicola Strisciuglio, Carlos M. Travieso-Gonzalez
UitgeverijIOS Press
Pagina's1-9
Aantal pagina's9
ISBN van elektronische versie9781614999287
DOI's
StatusPublished - 1-jan.-2018
Evenement1st International Conference on Applications of Intelligent Systems, APPIS 2018 - Las Palmas de Gran Canaria, Spain
Duur: 10-jan.-201812-jan.-2018

Publicatie series

NaamFrontiers in Artificial Intelligence and Applications
Volume310
ISSN van geprinte versie0922-6389

Conference

Conference1st International Conference on Applications of Intelligent Systems, APPIS 2018
Land/RegioSpain
StadLas Palmas de Gran Canaria
Periode10/01/201812/01/2018

Citeer dit