Predicting the tensile strength of polyester/cotton blended woven fabrics using feed forward back propagation artificial neural networks

Zulfiqar Ali Malik, Noman Haleem*, Mumtaz Hasan Malik, Anwaruddin Tanwari

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

11 Citaten (Scopus)

Samenvatting

Tensile strength plays a vital role in determining the mechanical behavior of woven fabrics. In this study, two artificial neural networks have been designed to predict the warp and weft wise tensile strength of polyester cotton blended fabrics. Various process and material related parameters have been considered for selection of vital few input parameters that significantly affect fabric tensile strength. A total of 270 fabric samples are woven with varying constructions. Application of nonlinear modeling technique and appreciable volume of data sets for training, testing and validating both prediction models resulted in best fitting of data and minimization of prediction error. Sensitivity analysis has been carried out for both models to determine the contribution percentage of input parameters and evaluating the most impacting variable on fabric strength.
Originele taal-2English
Pagina's (van-tot)1094-1100
Aantal pagina's7
TijdschriftFibers and Polymers
Volume13
Nummer van het tijdschrift8
DOI's
StatusPublished - 2012
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Predicting the tensile strength of polyester/cotton blended woven fabrics using feed forward back propagation artificial neural networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit