Production mechanisms of leptons, photons, and hadrons and their possible feedback close to lightning leaders

Christoph Kohn*, Gabriel Diniz, Muhsin N. Harakeh

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

12 Citaten (Scopus)
78 Downloads (Pure)

Samenvatting

It has been discussed that lightning flashes emit high-energy electrons, positrons, photons, and neutrons with single energies of several tens of MeV. In the first part of this paper we study the absorption of neutron beams in the atmosphere. We initiate neutron beams of initial energies of 350 keV, 10 MeV, and 20 MeV at source altitudes of 4 km and 16 km upward and downward and see that in all these cases neutrons reach ground altitudes and that the cross-section areas extend to several km(2). We estimate that for terrestrial gamma-ray flashes approximately between 10 and 2000 neutrons per ms and m(2) are possibly detectable at ground, at 6 km, or at 500 km altitude. In the second part of the paper we discuss a feedback model involving the generation and motion of electrons, positrons, neutrons, protons, and photons close to the vicinity of lightning leaders. In contrast to other feedback models, we do not consider large-scale thundercloud fields but enhanced fields of lightning leaders. We launch different photon and electron beams upward at 4 km altitude. We present the spatial and energy distribution of leptons, hadrons, and photons after different times and see that leptons, hadrons, and photons with energies of at least 40 MeV are produced. Because of their high rest mass hadrons are measurable on a longer time scale than leptons and photons. The feedback mechanism together with the field enhancement by lightning leaders yields particle energies even above 40 MeV measurable at satellite altitudes.

Originele taal-2English
Pagina's (van-tot)1365-1383
Aantal pagina's19
TijdschriftJournal of geophysical research-Atmospheres
Volume122
Nummer van het tijdschrift2
DOI's
StatusPublished - 27-jan-2017

Citeer dit