Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol

BEAt-DKD Consortium, Kim M. Gooding*, Chrysta Lienczewski, Massimo Papale, Niina Koivuviita, Marlena Maziarz, Anna-Maria Dutius Andersson, Kanishka Sharma, Paola Pontrelli, Alberto Garcia Hernandez, Julie Bailey, Kay Tobin, Virva Saunavaara, Anna Zetterqvist, David Shelley, Irvin Teh, Claire Ball, Sapna Puppala, Mark Ibberson, Anil KarihalooKaj Metsarinne, Rosamonde E. Banks, Peter S. Gilmour, Michael Mansfield, Mark Gilchrist, Dick de Zeeuw, Hiddo J. L. Heerspink, Pirjo Nuutila, Matthias Kretzler, Matthew Welberry Smith, Loreto Gesualdo, Dennis Andress, Nicolas Grenier, Angela C. Shore, Maria F. Gomez, Steven Sourbron

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

24 Citaten (Scopus)
119 Downloads (Pure)

Samenvatting

Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401).

Originele taal-2English
Artikelnummer242
Aantal pagina's11
TijdschriftBmc nephrology
Volume21
Nummer van het tijdschrift1
DOI's
StatusPublished - 29-jun.-2020

Vingerafdruk

Duik in de onderzoeksthema's van 'Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol'. Samen vormen ze een unieke vingerafdruk.
  • Additional file 1 of Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol

    Lienczewski, C. (Contributor), Karihaloo, A. (Contributor), Kretzler, M. (Contributor), Dutius Andersson, A.-M. (Contributor), Pontrelli, P. (Contributor), Gesualdo, L. (Contributor), Sharma, K. (Contributor), Welberry Smith, M. (Contributor), Gooding, K. M. (Contributor), Shore, A. C. (Contributor), Ibberson, M. (Contributor), Lambers Heerspink, H. (Contributor), Gomez, M. F. (Contributor), Gilchrist, M. (Contributor), Nuutila, P. (Contributor), Teh, I. (Contributor), Mansfield, M. (Contributor), Papale, M. (Contributor), Banks, R. E. (Contributor), Bailey, J. (Contributor), Andress, D. (Contributor), Koivuviita, N. (Contributor), Sourbron, S. (Contributor), Tobin, K. (Contributor), Metsärinne, K. (Contributor), Zetterqvist, A. (Contributor), Garcia Hernandez, A. (Contributor), De Zeeuw, D. (Contributor), Ball, C. (Contributor), Grenier, N. (Contributor), Saunavaara, V. (Contributor), Maziarz, M. (Contributor), Gilmour, P. S. (Contributor), Shelley, D. (Contributor) & Puppala, S. (Contributor), University of Groningen, 29-jun.-2020

    Dataset

  • Additional file 2 of Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol

    Dutius Andersson, A.-M. (Contributor), Garcia Hernandez, A. (Contributor), Tobin, K. (Contributor), Ball, C. (Contributor), Saunavaara, V. (Contributor), Teh, I. (Contributor), Banks, R. E. (Contributor), Sharma, K. (Contributor), Lienczewski, C. (Contributor), Koivuviita, N. (Contributor), Metsärinne, K. (Contributor), De Zeeuw, D. (Contributor), Karihaloo, A. (Contributor), Mansfield, M. (Contributor), Lambers Heerspink, H. (Contributor), Maziarz, M. (Contributor), Gesualdo, L. (Contributor), Pontrelli, P. (Contributor), Bailey, J. (Contributor), Papale, M. (Contributor), Nuutila, P. (Contributor), Gomez, M. F. (Contributor), Ibberson, M. (Contributor), Gooding, K. M. (Contributor), Sourbron, S. (Contributor), Shelley, D. (Contributor), Grenier, N. (Contributor), Shore, A. C. (Contributor), Zetterqvist, A. (Contributor), Welberry Smith, M. (Contributor), Gilchrist, M. (Contributor), Kretzler, M. (Contributor), Gilmour, P. S. (Contributor), Puppala, S. (Contributor) & Andress, D. (Contributor), University of Groningen, 29-jun.-2020

    Dataset

  • Additional file 4 of Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol

    Pontrelli, P. (Contributor), Grenier, N. (Contributor), Sharma, K. (Contributor), Dutius Andersson, A.-M. (Contributor), Garcia Hernandez, A. (Contributor), Mansfield, M. (Contributor), Teh, I. (Contributor), De Zeeuw, D. (Contributor), Lambers Heerspink, H. (Contributor), Ibberson, M. (Contributor), Papale, M. (Contributor), Saunavaara, V. (Contributor), Shore, A. C. (Contributor), Koivuviita, N. (Contributor), Sourbron, S. (Contributor), Bailey, J. (Contributor), Andress, D. (Contributor), Lienczewski, C. (Contributor), Banks, R. E. (Contributor), Metsärinne, K. (Contributor), Gilmour, P. S. (Contributor), Maziarz, M. (Contributor), Tobin, K. (Contributor), Shelley, D. (Contributor), Gesualdo, L. (Contributor), Puppala, S. (Contributor), Kretzler, M. (Contributor), Welberry Smith, M. (Contributor), Gooding, K. M. (Contributor), Nuutila, P. (Contributor), Gilchrist, M. (Contributor), Karihaloo, A. (Contributor), Ball, C. (Contributor), Zetterqvist, A. (Contributor) & Gomez, M. F. (Contributor), University of Groningen, 29-jun.-2020

    Dataset

Citeer dit