TY - JOUR
T1 - Proton therapy induces a local microglial neuroimmune response
AU - Voshart, Daniëlle C
AU - Klaver, Myrthe
AU - Jiang, Yuting
AU - van Weering, Hilmar R J
AU - van Buuren-Broek, Fleur
AU - van der Linden, Gideon P
AU - Cinat, Davide
AU - Kiewiet, Harry H
AU - Malimban, Justin
AU - Vazquez-Matias, Daniel A
AU - Reali Nazario, Luiza
AU - Scholma, Ayla C
AU - Sewdihal, Jeffrey
AU - van Goethem, Marc-Jan
AU - van Luijk, Peter
AU - Coppes, Rob P
AU - Barazzuol, Lara
N1 - Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
PY - 2024/4
Y1 - 2024/4
N2 - BACKGROUND AND PURPOSE: Although proton therapy is increasingly being used in the treatment of paediatric and adult brain tumours, there are still uncertainties surrounding the biological effect of protons on the normal brain. Microglia, the brain-resident macrophages, have been shown to play a role in the development of radiation-induced neurotoxicity. However, their molecular and hence functional response to proton irradiation remains unknown. This study investigates the effect of protons on microglia by comparing the effect of photons and protons as well as the influence of age and different irradiated volumes.MATERIALS AND METHODS: Rats were irradiated with 14 Gy to the whole brain with photons (X-rays), plateau protons, spread-out Bragg peak (SOBP) protons or to 50 % anterior, or 50 % posterior brain sub-volumes with plateau protons. RNA sequencing, validation of microglial priming gene expression using qPCR and high-content imaging analysis of microglial morphology were performed in the cortex at 12 weeks post irradiation.RESULTS: Photons and plateau protons induced a shared transcriptomic response associated with neuroinflammation. This response was associated with a similar microglial priming gene expression signature and distribution of microglial morphologies. Expression of the priming gene signature was less pronounced in juvenile rats compared to adults and slightly increased in rats irradiated with SOBP protons. High-precision partial brain irradiation with protons induced a local microglial priming response and morphological changes.CONCLUSION: Overall, our data indicate that the brain responds in a similar manner to photons and plateau protons with a shared local upregulation of microglial priming-associated genes, potentially enhancing the immune response to subsequent inflammatory challenges.
AB - BACKGROUND AND PURPOSE: Although proton therapy is increasingly being used in the treatment of paediatric and adult brain tumours, there are still uncertainties surrounding the biological effect of protons on the normal brain. Microglia, the brain-resident macrophages, have been shown to play a role in the development of radiation-induced neurotoxicity. However, their molecular and hence functional response to proton irradiation remains unknown. This study investigates the effect of protons on microglia by comparing the effect of photons and protons as well as the influence of age and different irradiated volumes.MATERIALS AND METHODS: Rats were irradiated with 14 Gy to the whole brain with photons (X-rays), plateau protons, spread-out Bragg peak (SOBP) protons or to 50 % anterior, or 50 % posterior brain sub-volumes with plateau protons. RNA sequencing, validation of microglial priming gene expression using qPCR and high-content imaging analysis of microglial morphology were performed in the cortex at 12 weeks post irradiation.RESULTS: Photons and plateau protons induced a shared transcriptomic response associated with neuroinflammation. This response was associated with a similar microglial priming gene expression signature and distribution of microglial morphologies. Expression of the priming gene signature was less pronounced in juvenile rats compared to adults and slightly increased in rats irradiated with SOBP protons. High-precision partial brain irradiation with protons induced a local microglial priming response and morphological changes.CONCLUSION: Overall, our data indicate that the brain responds in a similar manner to photons and plateau protons with a shared local upregulation of microglial priming-associated genes, potentially enhancing the immune response to subsequent inflammatory challenges.
U2 - 10.1016/j.radonc.2024.110117
DO - 10.1016/j.radonc.2024.110117
M3 - Article
C2 - 38453539
SN - 0167-8140
VL - 193
JO - Radiotherapy and Oncology
JF - Radiotherapy and Oncology
M1 - 110117
ER -