Activiteiten per jaar
Samenvatting
We present a prototype-based machine learning analysis of labeled galaxy catalogue data containing parameters from the Galaxy and Mass Assembly (GAMA) survey. Using both an unsupervised and supervised method, the Self-Organizing Map and Generalized Relevance Matrix Learning Vec- tor Quantization, we find that the data does not fully support the popular visual-inspection-based galaxy classification scheme employed to categorize the galaxies. In particular, only one class, the Little Blue Spheroids, is consistently separable from the other classes. In a proof-of-concept experiment, we present the galaxy parameters that are most discriminative for this class.
Originele taal-2 | English |
---|---|
Titel | ESANN, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning |
Redacteuren | Michel Verleysen |
Plaats van productie | Louvain-La-Neuve |
Uitgeverij | Ciaco - i6doc.com |
Pagina's | 339-344 |
Aantal pagina's | 6 |
Volume | 26 |
ISBN van elektronische versie | 978-287-587-048-3 |
ISBN van geprinte versie | 978-287-587-047-6 |
Status | Published - 24-apr.-2018 |
Evenement | Special Session at ESANN 2018: Machine Learning and Data Analysis in Astroinformatics - Brugge, Belgium Duur: 25-apr.-2018 → 27-apr.-2018 https://www.elen.ucl.ac.be/esann/index.php?pg=specsess#astroinformatics |
Conference
Conference | Special Session at ESANN 2018 |
---|---|
Land/Regio | Belgium |
Stad | Brugge |
Periode | 25/04/2018 → 27/04/2018 |
Internet adres |
Activiteiten
- 1 Attending an event
-
European Symposium on Artificial Neural Networks, Computational Intelligence, and Machine Learning
Michael Biehl (Attendee), Aleke Nolte (Attendee), Kerstin Bunte (Attendee) & Mohammad Mohammadi (Attendee)
25-apr.-2018 → 27-apr.-2018Activiteit: Attending an event › Academic