PushPull-Net: Inhibition-driven ResNet robust to image corruptions

Guru Swaroop Bennabhaktula, Enrique Alegre, Nicola Strisciuglio, George Azzopardi

Onderzoeksoutput: VoordrukAcademic

4 Downloads (Pure)

Samenvatting

We introduce a novel computational unit, termedPushPull-Conv, in the first layer of a ResNet architecture, inspired bythe anti-phase inhibition phenomenon observed in the primary visualcortex. This unit redefines the traditional convolutional layer byimplementing a pair of complementary filters: a trainable push kerneland its counterpart, the pull kernel. The push kernel (analogous totraditional convolution) learns to respond to specific stimuli, while thepull kernel reacts to the same stimuli but of opposite contrast. Thisconfiguration enhances stimulus selectivity and effectively inhibitsresponse in regions lacking preferred stimuli. This effect is attributed tothe push and pull kernels, which produce responses of comparablemagnitude in such regions, thereby neutralizing each other. Theincorporation of the PushPull-Conv into ResNets significantly increasestheir robustness to image corruption. Our experiments with benchmarkcorruption datasets show that the PushPull-Conv can be combinedwith other data augmentation techniques to further improve modelrobustness. We set a new robustness benchmark on ResNet50 achievingan mCE of 49.95% on ImageNet-C when combining PRIMEaugmentation with PushPull inhibition.
Originele taal-2English
Plaats van productieKolkata
UitgeverarXiv
Aantal pagina's17
DOI's
StatusSubmitted - 7-aug.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'PushPull-Net: Inhibition-driven ResNet robust to image corruptions'. Samen vormen ze een unieke vingerafdruk.
  • PushPull-Net: Inhibition-Driven ResNet Robust to Image Corruptions

    Bennabhaktula, G. S., Alegre, E., Strisciuglio, N. & Azzopardi, G., 2025, Pattern Recognition - 27th International Conference, ICPR 2024, Proceedings. Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, C.-L., Bhattacharya, S. & Pal, U. (uitgave). Springer, blz. 391-408 18 blz. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 15308 LNCS).

    OnderzoeksoutputAcademicpeer review

Citeer dit