PushPull-Net: Inhibition-Driven ResNet Robust to Image Corruptions

Guru Swaroop Bennabhaktula*, Enrique Alegre, Nicola Strisciuglio, George Azzopardi

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

Samenvatting

We introduce a novel computational unit, termed PushPull-Conv, in the first layer of a ResNet architecture, inspired by the anti-phase inhibition phenomenon observed in the primary visual cortex. This unit redefines the traditional convolutional layer by implementing a pair of complementary filters: a trainable push kernel and its counterpart, the pull kernel. The push kernel (analogous to traditional convolution) learns to respond to specific stimuli, while the pull kernel reacts to the same stimuli but of opposite contrast. This configuration enhances stimulus selectivity and effectively inhibits response in regions lacking preferred stimuli. This effect is attributed to the push and pull kernels, which produce responses of comparable magnitude in such regions, thereby neutralizing each other. The incorporation of the PushPull-Conv into ResNets significantly increases their robustness to image corruption. Our experiments with benchmark corruption datasets show that the PushPull-Conv can be combined with other data augmentation techniques to further improve model robustness. We set a new robustness benchmark on ResNet50 achieving an mCE of 49.95% on ImageNet-C when combining PRIME augmentation with PushPull inhibition.

Originele taal-2English
TitelPattern Recognition - 27th International Conference, ICPR 2024, Proceedings
RedacteurenApostolos Antonacopoulos, Subhasis Chaudhuri, Rama Chellappa, Cheng-Lin Liu, Saumik Bhattacharya, Umapada Pal
UitgeverijSpringer
Pagina's391-408
Aantal pagina's18
ISBN van elektronische versie9783031781865
ISBN van geprinte versie9783031781858
DOI's
StatusPublished - 2025
Evenement27th International Conference on Pattern Recognition, ICPR 2024 - Kolkata, India
Duur: 1-dec.-20245-dec.-2024

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15308 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Conference

Conference27th International Conference on Pattern Recognition, ICPR 2024
Land/RegioIndia
StadKolkata
Periode01/12/202405/12/2024

Vingerafdruk

Duik in de onderzoeksthema's van 'PushPull-Net: Inhibition-Driven ResNet Robust to Image Corruptions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit