Quadratic Chabauty for modular curves: algorithms and examples

Jennifer S. Balakrishnan, Netan Dogra, Steffen Müller, Jan Tuitman, Jan Vonk

Onderzoeksoutput: ArticleAcademicpeer review

8 Citaten (Scopus)
142 Downloads (Pure)

Samenvatting

We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus g>1 whose Jacobians have Mordell–Weil rank g. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients X+0(N) of prime level N, the curve XS4(13), as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve X+ns(17).
Originele taal-2English
Pagina's (van-tot)1111-1152
Aantal pagina's43
TijdschriftCompositio mathematica
Volume159
Nummer van het tijdschrift6
DOI's
StatusPublished - 15-mei-2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Quadratic Chabauty for modular curves: algorithms and examples'. Samen vormen ze een unieke vingerafdruk.

Citeer dit