Quantifying Local Radiation-Induced Lung Damage From Computed Tomography

Ghazaleh Ghobadi, Laurens E. Hogeweg, Hette Faber, Wim G. J. Tukker, Jacobus M. Schippers, Sytze Brandenburg, Johannes A. Langendijk, Robert P. Coppes, Peter van Luijk*

*Bijbehorende auteur voor dit werk

    OnderzoeksoutputAcademicpeer review

    36 Citaten (Scopus)
    7 Downloads (Pure)

    Samenvatting

    Purpose: Optimal implementation of new radiotherapy techniques requires accurate predictive models for normal tissue complications. Since clinically used dose distributions are nonuniform, local tissue damage needs to be measured and related to local tissue dose. In lung, radiation-induced damage results in density changes that have been measured by computed tomography (CT) imaging noninvasively, but not yet on a localized scale. Therefore, the aim of the present study was to develop a method for quantification of local radiation-induced lung tissue damage using CT.

    Methods and Materials: CT images of the thorax were made 8 and 26 weeks after irradiation of 100%, 75%, 50%, and 25% lung volume of rats. Local lung tissue structure (S(L)) was quantified from local mean and local standard deviation of the CT density in Hounsfield units in 1-mm(3) subvolumes. The relation of changes in S(L) (Delta S(L)) to histologic changes and breathing rate was investigated. Feasibility for clinical application was tested by applying the method to CT images of a patient with non-small-cell lung carcinoma and investigating the local dose-effect relationship of Delta S(L).

    Results: In rats, a clear dose-response relationship of Delta S(L) was observed at different time points after radiation. Furthermore, Delta S(L) correlated strongly to histologic endpoints (infiltrates and inflammatory cells) and breathing rate. In the patient, progressive local dose-dependent increases in Delta S(L) were observed.

    Conclusion: We developed a method to quantify local radiation-induced tissue damage in the lung using CT. This method can be used in the development of more accurate predictive models for normal tissue complications. (C) 2010 Elsevier Inc.

    Originele taal-2English
    Pagina's (van-tot)548-556
    Aantal pagina's9
    TijdschriftInternational Journal of Radiation Oncology Biology Physics
    Volume76
    Nummer van het tijdschrift2
    DOI's
    StatusPublished - 1-feb.-2010

    Citeer dit