Reading the copepod personal ads: increasing encounter probability with hydromechanical signals

LA van Duren*, EJ Stamhuis, JJ Videler

*Bijbehorende auteur voor dit werk

    OnderzoeksoutputAcademicpeer review

    39 Citaten (Scopus)


    Females of the calanoid copepod Temora longicornis react to chemical exudates of male conspecifics with little hops, quite distinct from their normal smooth uniform swimming motion. These hops possibly serve to create a hydrodynamical signal in the surrounding water, to increase encounter probability with potential mates. Laser sheet particle image velocimetry was used to investigate the flow fields associated with these hops and to compare them to the flow of the feeding current of an adult female. During, and immediately after a hop, the flow field around the copepod showed a marked difference from that of a foraging animal. During foraging, the highest velocity gradients were located around the feeding appendages of the copepod. During a hop, high velocity gradients are located behind the animal. About 0.5 seconds after the start of swimming leg movement, effects of the hop had virtually dissipated and the flow field resembled that around a foraging animal. The estimated volume of influence (i.e. the volume around the copepod where the animal has a significant influence on the water) increased about 12-fold during the hop compared with the situation around a foraging animal. Furthermore, the rate of viscous energy dissipation within the copepods' volume of influence increased nearly 80-fold. Hops may serve to increase encounter probability, but due to the short duration of the effect and the high energetic costs they would only be adaptive when other cues have indicated that suitable sexual partners are in the vicinity.

    Originele taal-2English
    Pagina's (van-tot)691-700
    Aantal pagina's10
    TijdschriftPhilosophical Transactions of the Royal Society of London. Series B: Biological Sciences
    Nummer van het tijdschrift1369
    StatusPublished - 29-mei-1998

    Citeer dit