Recurrence and Higher Ergodic Properties for Quenched Random Lorentz Tubes in Dimension Bigger than Two

Marcello Seri, Marco Lenci*, Mirko degli Esposti, Giampaolo Cristadoro

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

5 Citaten (Scopus)
57 Downloads (Pure)

Samenvatting

We consider the billiard dynamics in a non-compact set of a"e (d) that is constructed as a bi-infinite chain of translated copies of the same d-dimensional polytope. A random configuration of semi-dispersing scatterers is placed in each copy. The ensemble of dynamical systems thus defined, one for each global realization of the scatterers, is called quenched random Lorentz tube. Under some fairly general conditions, we prove that every system in the ensemble is hyperbolic and almost every system is recurrent, ergodic, and enjoys some higher chaotic properties.

Originele taal-2English
Pagina's (van-tot)124-138
Aantal pagina's15
TijdschriftJournal of Statistical Physics
Volume144
Nummer van het tijdschrift1
DOI's
StatusPublished - jul.-2011
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Recurrence and Higher Ergodic Properties for Quenched Random Lorentz Tubes in Dimension Bigger than Two'. Samen vormen ze een unieke vingerafdruk.

Citeer dit