Refined Chabauty--Kim calculations for the thrice-punctured line over Z[1/6]

Martin Lüdtke*

*Bijbehorende auteur voor dit werk

Onderzoeksoutput: VoordrukAcademic

19 Downloads (Pure)


The Chabauty--Kim method and its refined variant by Betts and Dogra aim to cut out the $S$-integral points $X(\mathbb{Z}_S)$ on a curve inside the $p$-adic points $X(\mathbb{Z}_p)$ by producing enough Coleman functions vanishing on them. We derive new functions in the case of the thrice-punctured line when $S$ contains two primes. We describe an algorithm for computing refined Chabauty--Kim loci and verify Kim's conjecture over $\mathbb{Z}[1/6]$ for all choices of auxiliary prime $p<10{,}000$.
Originele taal-2English
Aantal pagina's23
StatusSubmitted - 5-feb.-2024

Citeer dit